
Chapter 4

[101]

 c.PhoneNo = reader["PhoneNo"];
 c.UserName = reader["UserName"];
 c.Password = reader["Password"];
 c.Email = reader["Email"];
 }
 list.Add(c);
 }
 }
 }
 return list;
 }

In this DAL method, I am lazy loading all customers, which means that I check the
load status (which is being passed as an argument), and then, if the status is loaded,
I load fetch all properties from the database; otherwise I fetch only CustomerID and
Name as these properties will be displayed in the front end, the CustomerList.aspx
page. So we are not loading other properties that are not required on that particular
page. But if we need to load them all at once, then we can pass in the Load Status
value as Loaded to indicate to our DAL that it has to load all properties.

Performance note: Note the use of data readers for better performance.
Data readers are read-only, one-way pointers to the database. Hence, they
are much lighter and faster than data sets and data adapters (which in
turn use data readers to map data). It is always better to use data readers
for filling in custom entities so that we have a fine level of control over the
data access process, in addition to gaining the performance advantage of
a data reader.
Architectural note: Note that instead of returning List<Customer>
we are returning Collection<Customer> from the DAL methods
due to the fact that List<T> should be used for internal use only, not
in public APIs. Now our DAL is made in an API-like fashion. To make
sure that our API is extendable, we need to use Collection<T> as
this is extendable, unlike List<T> where we cannot override any
member. For example, we can override the SetItem protected method in
Collection<T> to get notified when the collection is changed (such as
adding a new item and so on). Besides this, List<T> has too much extra
stuff that is useful for internal use only, and not as a return type to
an API.

N-Tier Architecture

[102]

Updating Business Objects
Now let us see how we can update a Customer business object in the Customer.cs
business class. Here is the code:

public bool Update()
 {
 try
 {
 ///<remark>
 ///Check for the load status to make sure that update is
 ///not being called on disconnected/'ghost' loaded objects.
 ///</remark>
 if(_customerDTO.loadStatus == LoadStatus.Loaded)
 {
 CustomerDAL.UpdateCustomer(_customerDTO);
 ///<remarks>
 ///Set load status to 'ghost' to mark that it needs to
 ///be fully loaded again
 ///</remarks>
 _customerDTO.loadStatus=LoadStatus.Ghost;
 return true;
 }
 else
 {
 return false;
 }
 }
 }

In this Update() method, we first check if the Customer object to be updated is fully
loaded or not, as there is no use performing an update action on a partially-loaded
(or ghost loaded) Customer object (with only Name and ID fields). If the object is
ghost loaded, we return the method Call, else we call the Update method of the
DAL class to update the Customer.

After the DAL's Update method is called, we make sure that the LoadStatus of
the Customer object is set to Ghost. This is done to make sure that all consumers
of this object need to get the latest properties from the database, as it has been
recently updated.

